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The development of a Sundman-type time-transformation for reversible variable stepsize integration of few-body problems is discussed.
While a time-transformation based on minimum particle separation is suitable if the collisions only occur pairwise and isolated in time, the
control of stepsize is typically much more difficult for a three-body close approach. Nonetheless, we find that a suitable choice of time-
transformation based on particle separation can work quite well for certain types of three-body simulations, particularly those involving
very steep repulsive walls. We confirm these observations using numerical examples from Lennard-Jones scattering.
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1. Introduction

For a conservative (i.e. Hamiltonian) system, the natu-
ral integration paradigm is the symplectic map, a subject of
much recent interest. For such maps, it is possible to show
the existence of a perturbed Hamiltonian function1 whose
exact dynamics replicate the numerical solution, up to an er-
ror term exponentially small in the timestep (O

�
e � 1 � ∆t � ), for

a long (but finite) interval in time [1–3]. The presence of this
approximate conserved quantity appears to confer greater
numerical stability on the numerical simulation. In prac-
tice, when integrating a system with smooth dynamics us-
ing a symplectic integrator with sufficiently small stepsize,
one observes that the energy of the numerical solution oscil-
lates chaotically, but with little discernible secular growth or
decay, even during very long time integrations.

The situation may be quite different, however, when
the system is subject to very strong localized forces, e.g.
when integrating collisional N-body dynamics involving a
Coulombic or hard soft-wall (inverse power law) interbody
potential. Here we observe that energy error varies rapidly
at the impacts of the bodies, and may even jump to a new
energy level during a collision. While a sufficiently small
timestep will typically force the simulation into the regime
where the asymptotic treatment can be applied, this timestep
restriction may be unrealistic for practical purposes, partic-
ularly away from the points of collision. For this reason,
it is natural to attempt to incorporate some sort of variable
stepsize strategy to improve the behavior of the simulation.
�
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1 The perturbed Hamiltonian is developed as a series expansion with the

terms of this expansion obtained by matching the associated perturbative
dynamics with the asymptotic expansion of the numerical solution.

Unfortunately, as shown by Sanz-Serna and Calvo [4], a
symplectic method does not perform as well when the step-
size is varied as when the stepsize is held fixed. There are
at least two reasonable explanations for this. First, one may
observe that the stepsize is typically being computed from an
error estimate. In this sense, the stepsize is itself a function
of the phase variables. The dependency of one step on the
previous step must therefore include the functional depen-
dence of the stepsize on that previous step. The combined
mapping is therefore typically not symplectic even when it
is based on a symplectic fixed stepsize integrator. An alter-
native explanation is that the perturbative series expansion
for the “nearby Hamiltonian” of a symplectic integrator is
only generally meaningful when the numerical solution can
be viewed as the iteration of a single symplectic one-step
method.

Despite this rather pessimistic state of affairs, it turns out
that a symplectic treatment with variable stepsizes is possi-
ble. The idea is to introduce a Poincaré transformation [5,6]
of the Hamiltonian H � H

�
q � p � :

H̃ � g
�
q � p �
�
H � H0

� � g 	 0 �

where g is a “control” or “monitor function”. Along the en-
ergy slice H � H0, the dynamics of the transformed system
will be equivalent to those of the original system, up to a
transformation of time. To see this, write the Hamilton’s
equations

q̇ � g∇pH 

�
H � H0

� ∇pg �
ṗ ��� g∇qH �

�
H � H0

� ∇qg �

then observe that when H � H0, the equations are the same



2 Bond and Leimkuhler / Reversible Variable Stepsize Integration

as the original equations expressed in a new time variable,
say τ, satisfying

dt
dτ
� g
�
q � p ��� (1)

A major disadvantage of the general Poincaré transfor-
mation is that it mixes the variables so that an explicit sym-
plectic treatment of the extended Hamiltonian is no longer
possible, and we are compelled to use implicit symplectic
methods (see [3,7]). A first order method can however be
made semi-explicit in the case of an N-body system with
separated Hamiltonian function T

�
p � 
 V

�
q � , but a second

order method is often required for accuracy reasons. A more
serious defect associated with the Poincaré transformation
is that it allows the numerical solution to leave the energy
slice H � H0, effectively destroying the precise relationship
(through (1)) between t and τ.

In this article we consider Hamiltonian systems with
time-reversal symmetry (i.e. H

�
q � � p � � H

�
q � p � ). For

such problems there is a less expensive alternative approach
which appears to yield—at least to some extent—the ben-
efits of a symplectic method, even though it is not in fact
symplectic. The idea is to replace the Poincaré transforma-
tion by direct use of the Sundman transformation (1) and
then to solve the ODEs

q̇ � g∇pH � (2)

ṗ � � g∇qH � (3)

This new system is rarely a Hamiltonian system (this would
only be the case if g � g̃

�
H
�
q � p � � for some scalar func-

tion g̃). Nonetheless, if g
�
q � � p � � g

�
q � p � and g

�
q � p � 	 0,

then the new system will retain the time-reversal symmetry
present in the original system. As we outline in the next sec-
tion, an explicit time-reversible integrator is available for the
reparameterized system, namely the Adaptive Verlet method
proposed by W. Huang and the second author [8].

Like symplecticness, the time-reversal symmetry is a
strong geometric property of the flow of a mechanical sys-
tem. Over long time simulations, methods which preserve
the time-reversal symmetry can exhibit improved stability
[9–11] when compared to standard integration methods. Un-
like symplecticness, time-reversal symmetry of a numerical
integration scheme does not in general confer an approxi-
mate integral obtainable through an asymptotic expansion.
One case where such a result is available is in the case of
the two-body problem, where it follows readily from the
strong symmetry of the system [10]. For Coulombic few-
body problems, time-reversible schemes can also be applied
in concert with Kustaanheimo-Stiefel transformations [10]
and appear to demonstrate excellent long-term preservation
properties.

Energy conserving schemes have been considered by sev-
eral authors [12–15]. These methods can preserve energy

and/or angular momentum, as well as reversing symme-
try, but not simultaneously energy and symplectic struc-
ture, due to a celebrated result of Ge and Marsden [16].
While reversible energy-momentum methods have occasion-
ally proven effective, these methods are necessarily implicit;
the need to solve a system of nonlinear equations at each
timestep typically limits the effectiveness of the methods.

A key barrier to the wider use of the reversible adaptive
methods is the design of appropriate time-transformation
functions g. For the two-body problem, it is usually possible
to develop a time-transformation based on minimum particle
separation, but it is not clear that such an approach would
adequately adjust the timestep in the vicinity of a three-body
close approach. In this article, we explore the application of
the reversible approach with special attention to the problem
of a few particles interacting under a Lennard-Jones type po-
tential.

2. Adaptive Verlet

The equations (2)-(3) are discretized by a special second
order scheme, as first proposed in [8]:

qn
�

1 � 2 � qn 
 ∆tn∇pH
�
qn � pn

�
1 � 2 � � (4)

pn
�

1 � 2 � pn � ∆tn∇qH
�
qn � pn

�
1 � 2 � � (5)

2R
∆s
� 1

∆tn � 1

 1

∆tn
� (6)

qn
�

1 � qn
�

1 � 2 
 ∆tn � 1∇pH
�
qn

�
1 � pn

�
1 � 2 � � (7)

pn
�

1 � pn
�

1 � 2 � ∆tn � 1∇qH
�
qn

�
1 � pn

�
1 � 2 � � (8)

where R is one of the following expressions:

R1 � 2g
�
qn

�
1 � 2 � pn

�
1 � 2 � �

R2 � g
�
qn

�
1 � 2 � pn � 
 g

�
qn

�
1 � 2 � pn

�
1 � �

R3 � g
�
qn � pn � 
 g

�
qn

�
1 � pn

�
1 ���

Note that the first choice leads to an explicit method in the
case of a separable Hamiltonian (i.e. H

�
q � p � � T

�
p � 


V
�
q � ); the second is semi-explicit and the last is fully im-

plicit. For the numerical experiments in this article, we will
use the explicit method, R1. For details and differences be-
tween the methods, the reader is referred to [8,17]. The rea-
son for using the reciprocal of the timestep in (6) is not im-
mediately obvious, but this approach was found to behave
well in numerical experiments. Very recently, a precise ra-
tionale for this choice has been given based on an asymptotic
(“backward error”) analysis of the resulting method [18].

3. Power Law Potentials and The Time
Reparameterization Function

We now consider a simple model problem for the hard
soft-wall, the one degree of freedom problem with Hamilto-
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nian

H � p2

2

 q � α �

In this system α is a fixed parameter, which determines the
strength of the repulsive wall. For a given set of initial condi-
tions, q may become rather small, resulting in a large time-
localized force. We would like to introduce a rescaling of
time, which decreases the severity of this problem. We there-
fore introduce a Sundman transformation of the form

g1
�
q � p � � qβ �

leading to the following equations of motion:

dq
dτ
� qβ p �

dp
dτ
� αqβ � α � 1 �

What value of β gives optimal control of the simulation?
In some sense, we would like β to be as small as possible,
since a larger β will add to the number of timesteps, and
hence the work, performed during the collision event. We
choose the value of β using a simple technique.

3.1. Optimal selection of β for hard soft-wall potentials

Consider an orbit of the (untransformed) one-degree of
freedom system. The particle starts from a distant point with
momentum p � ∞, approaches the point of collision q � qmin.
During a short time interval, the momentum changes sign
and the particle position tends to infinity with asymptotic
value p � ∞ � � p � ∞. The situation is illustrated in Figure
1. Assuming that the wall is rather steep, we can calculate,
approximately, the duration of the collision as follows.

Assume an energy E 	 0. Far from the wall, the energy
is all kinetic, so we have

�
p � ∞
�
��� 2E �

Note that, for a hard soft-wall, this is also the value of the
momentum until just prior to the time of collision, when it
changes very suddenly. At the point of collision, on the other
hand, p � 0 and q � qmin, implying that

q � α
min � E �

This allows us to solve for p � ∞ in terms of qmin:
�
p � ∞
�
� � 2E1 � 2 � � 2q � α � 2

min
� (9)

Near the point of close approach, the positional motion
slows, almost to a stop, while the momentum changes sign
very suddenly according to the differential equation

ṗ � αq � α � 1
min �

thus, with T the total time for this collision,

p � ∞ � p � ∞ � αq � α � 1
min T �

q

p

−p∞

p∞

q
min

t t

p q

Figure 1. A collision test orbit in a single degree of freedom model
with a hard soft-wall. A typical orbit in phase space is shown in the
upper panel. In the lower panel, the corresponding evolution of q

and p are plotted with respect to time.

But since p � ∞ ��� p � ∞ and using (9), we have

2 � 2q � α � 2
min � αq � α � 1

min T �

or

T � 2 � 2
α

qα � 2 � 1
min

�

To put this into words, the stronger and sharper the wall, the
shorter the duration of the collision.

Now let’s repeat this exercise in the case of rescaling with
g
�
q � � qβ, that is, let’s determine the total fictive time during

which the collision takes place. Using the same basic proce-
dure and the fact that the relationship (9) is undisturbed by
the scaling (energy is still a conserved quantity), we find that
the collision now lasts τ units of fictive time, where

τ � 2 � 2
α

q � β � α � 2 � 1
min

� (10)

Based on this formula, we propose the choice β � α � 2
2

as approximately optimal. With this value, we make the
fictive time collision duration uniform with respect to qmin.
In other words, no matter the energy level, by using β �
α � 2

2 , the collision event will require approximately the same
amount of fictive time, so that sharper collisions (which
would normally happen very rapidly) are “slowed down” in
the rescaled time so that they evolve on the same time scale
as relatively weak collisions. The choice of β can therefore
be viewed as rendering the resulting equations scaling in-
variant in a certain sense. For a survey and related discus-
sion, see [19].
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We expect this estimate of optimal β to be valid for the
high energy regime, i.e., when qmin is rather less than unity,
so that the exponential part of (10) is most critical. It should
be pointed out that, with fixed energy E, we know that
qmin � E � 1 � α � 1 with increasing α. The optimal choice
of β therefore becomes less critical for large values of α at
low energy.

3.2. Stepsize Bounds

An important observation is that the choice of time-
transformation motivated by control of the error near col-
lision may lead to instabilities during the “smooth regime.”
We can draw an interesting parallel here with work on stiff
differential equations: it is important that a variable stepsize
technique introduced for controlling step during rapid tran-
sients not lead to inefficiencies away from the transient, i.e.
during the “stiff phase.”

Intuitively, we would like the asymptotic behavior of our
system to remain unchanged under time transformation. To
investigate the situation, we start by writing the system as a
second-order differential equation:

d2q
dτ2 �

β
q

�
dq
dτ � 2


 αq2β � α � 1 �

For the untransformed system, one can clearly see that
the acceleration goes to zero as q goes to infinity, so that
asymptotically q moves along a straight line. This is not the
situation in the rescaled dynamics if 2β � α 
 1. In this case
the acceleration will increase monotonically, and we will not
have linear motion as q goes to infinity; indeed, q may tend
to infinity in a finite number of steps.

This strong (and unfortunate) restriction in the choice of β
can be eliminated by using a modified transformation func-
tion g of the form

g2
�
q � ��� c 
 q � β � � 1

� c 	 0 �

If the constant c is small, we have simply introduced an
asymptotic upper bound on the time rescaling. In our new
time variable, τ, the equations of motion are

dq
dτ
�
�
c 
 q � β � � 1 p �

dp
dτ
� α
�
c 
 q � β � � 1q � α � 1 �

or

d2q
dτ2 �

β
cqβ 
 q

�
dq
dτ � 2


 αq � α � 1
�

1

c 
 q � β � 2

As q
�
τ � goes to infinity, the acceleration goes to zero. We

conclude this section with a proposition summarizing our
observations.

Proposition 1. For a hard soft-wall collision, the choice

g
�
q � � � c 
 q � β � � 1

� c 	 0 � β �
�
α 
 2 ��� 2 �

combines (1) uniform fictive collision time (independent of
energy level), and (2) straight-line motion as q � ∞.

4. Numerical Experiments: The Lennard-Jones
Potential

A common application for Power-Law potential functions
arises in molecular modeling. Combinations of such poten-
tial functions are used to model the repulsive and attractive
interactions between non-bonded atoms. One of the most
commonly used potentials of this form is the Lennard-Jones
potential,

V
�
q � � 4ε ∑

i 	 j 
 � σ
ri j � 12

�
�

σ
ri j � 6 �

In this model ε and σ are constants, and ri j is the distance be-
tween the ith and jth atoms. V

�
q � can change quite rapidly

whenever one of these distances is small. In Figure 2, sev-
eral level curves of the Hamiltonian are shown to illustrate
the characteristics of a typical orbit. While low energy simu-
lations lead to periodic trajectories, higher energy levels can
cause an atom to be ejected from the system. One should
also observe that when the distance between the atoms is at
a minimum, the momenta changes rapidly, due to the strong
forces. If the timestep is not small enough, these forces can
lead to nonphysical jumps in the energy. On the other hand,
if all of the atoms are far apart, the forces in the system are
quite small. In this regime, there is no need for adaptive
timestepping. The control function proposed in the previ-
ous section meets these criteria. While this control function
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Figure 2. The 2-body Lennard-Jones problem. The level curves of the
Hamiltonian are shown in phase space, indicating differences between high

and low energy trajectories.
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Figure 3. The optimal control parameter for the 2-body Lennard-Jones
Problem. The work is plotted as a function of β for a fixed error level, in the
upper and center panels. The lower panel shows the work error diagram,

illustrating the benefits of control.

was designed for a one dimensional problem, we can easily
extend it to an N-body system in the following way: 2

g2
�
q � � � c 
 rβ

min
� � 1

with rmin � min
i � j

ri j

4.1. Two-Body Problem

As a numerical experiment, we find the optimal β for
the g2 control function, as it is applied to the low energy
two-body Lennard-Jones problem. Two atoms are started at
an initial separation of 2.5 units, with no initial momenta.
During the course of the simulation, they repeatedly collide,
generating a periodic solution. The error in the simulation
is gauged by maximum deviation in energy over the length
of the run. In order to assess the efficiency of each choice
of β, the stepsize is adjusted to hold the maximum energy
deviation constant between runs.

2 For the general N-body problem, the function g2
�
q � is continuous but not

differentiable. While the method does not use derivatives of the control,
it may be needed for backward error analysis. A smoothed version of this

control can be obtained by substituting ∑i � j

�
r � p

i j � � 1 � p
for rmin, with p

large.

0 50 100 150 200 250 300
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01
2−Body Low−Energy:     Deviation from constant energy

time

H
 −

 H
0

135 140 145 150

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10−4 16x zoom

time

g
1
 control

uncontrolled

142.5 143 143.5 144 144.5
−1

−0.5

0

0.5

1
x 10−4 128x zoom

time

uncontrolled

g
1
 control
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and the adaptive method (control function g1 with β � 4) is shown in the
upper panel. Close-ups of the energy conservation over a single collision
are given in the two lower panels, illustrating the concentration of steps

taken in the vicinity of an impact.

In Figure 3, the work as a function of β is plotted for a
fixed error level. From our analysis in the previous sections,
we expect β � 7 to be optimal, if the repulsive part of the po-
tential dominates the interactions. This will only be the case
when the separation between the atoms is near a minimum.
By increasing the value of c, we can increase the localization
of our control. When the effect of the control is sufficiently
localized (c � 1 � 0), we find that β � 7 � 0 is indeed nearly op-
timal. One should note that we get more of an optimal range
for β, than a single optimal value, especially when c 	 0.

On the other hand, if we set c to zero, the control has
strong effects away from the collisions. For this case, we
find that β � 4 � 25 is optimal, since the attractive force now
influences our parameter choice. Figure 3 also shows the
efficiency of the controlled and uncontrolled methods. In
our particular test problem the trajectory remains bounded,
eliminating the need for c. It is not surprising that we find
the greatest improvements in the efficiency of the algorithm
when c is set to zero.

In Figure 4 the deviation in energy using the most effi-
cient g2 control is compared with the uncontrolled method.



6 Bond and Leimkuhler / Reversible Variable Stepsize Integration

0 5 10 15
10

3

10
4

10
5

10
6

st
ep

s

parameter, β

g
2
 control with c = 1.0          α = 12.0

E = 102

E = 103

E = 104

0 5 10 15 20 25 30
10

3

10
4

10
5

10
6

st
ep

s

parameter, β

g
2
 control with c = 1.0          α = 24.0

E = 102

E = 103

E = 104

Figure 5. The optimal control parameter for the hard soft-wall problem. In
the upper panel, the work is shown as a function of β for a fixed error level
using α � 12 � 0, and for various energy levels (E � 102, 103, and 104). In

the lower panel a similar figure is given for α � 24 � 0.

This figure illustrates how the controlled method is able to
dramatically improve the efficiency of the integration. It
takes very small steps whenever the separation between the
two atoms becomes small. This allows for a more accurate
resolution of the dynamics in the vicinity of this “collision”.
For this simple problem, we can achieve improvements of
several orders of magnitude by introducing stepsize control.

As a final two-body numerical experiment, we return to
the model problem for the hard soft-wall, with Hamiltonian

H � p2

2

 q � α �

We would like to understand how the adaptive method per-
forms for different energy levels, and different values of
α. We begin with the case of Lennard-Jones repulsion, i.e.
α � 12 � 0. We start our simulation with q large, and with the
initial momenta negative. There is a single collision event,
and then the particle is ejected. Our analysis in the previous
section has indicated that for the g2 control, β � 7 � 0 should
be nearly optimal. However, this analysis was based on a
simulation at high energy, and we would like to investigate
how the optimal value of β varies with changes in energy.
We hold the maximum deviation in the energy constant, and

vary the parameter β. In the upper panel, in Figure 5, the
number of steps is shown as a function of β for three differ-
ent energy levels. At low energy levels, the curve is rather
flat, and we see more of a range of optimal values than a
single optimal choice. As the energy level is increased, the
minimum in the curve becomes more pronounced. We find
that β � 7 � 0 is nearly optimal at the highest energy level. In
the lower panel, in Figure 5, we show the same curves for
α � 24 � 0. Here we see a similar trend, with β � 13 � 0 nearly
optimal in the more energetic simulations.

4.2. Three-Body Problem

The dynamics of the system are dramatically changed by
the addition of a third body. Many of the symmetries present
in the two-body problem are no longer preserved. During
a many-body simulation, the amount of energy present in
three-body interactions may be much higher than for two
bodies. We would like to investigate possibility of strong
three-body interactions (i.e. during triple “collisions”) and
whether a control function based on three body interactions
is required to efficiently resolve the dynamics.

We construct our three-body control functions as exten-
sions of the two-body control g2. This is a natural construc-
tion since one would like these new functions to behave sim-
ilar to g2 during two-body “collisions”. Composing g2 with
the elementary symmetric functions [20] of order three, we
get three new control functions:

g3
�
q � � � � c 
 r � β

12
� � c 
 r � β

13
� � c 
 r � β

23
� � � 1 � 3

g4
�
q � �

� � � c 
 r � β
12
� � c 
 r � β

23
� � 1 � 2


 � � c 
 r � β
12
� � c 
 r � β

23
� � 1 � 2


 � � c 
 r � β
12
� � c 
 r � β

13
� � 1 � 2 � � 1

g5
�
q � � � � c 
 r � β

12
� 
 � c 
 r � β

13
� 
 � c 
 r � β

23
� � � 1

In order to study the effects of these new control functions
over a wide range of interactions, we consider the three-body
scattering problem. We place two atoms close together, in a
periodic trajectory, and fire a third atom into the system. The
offset at which the third body is fired, is varied by specifying
a scattering parameter, δ. We then record the angle, θ, at
which this third body asymptotically exits the system. In
Figure 6 we show the initial conditions, and the relationship
between δ and θ. Rapid fluctuations in the scattering plot
indicate a sensitive dependence of the solution on the initial
conditions.

In our numerical experiment, the scattering parameter, δ,
is chosen at 1000 evenly spaced points between -3 and 3.
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Figure 6. The 3-Body Lennard Jones Scattering Problem. The initial con-
ditions, which depend on a scattering parameter, δ, are shown in the upper
panel. The lower panel shows the exit (or scattering) angle of one particle,

as a function of δ.

We allow each control function to prescribe an average of
2500 steps per run. This will make the total work over all
the initial conditions equal for each variation of our method.
For each run, we record the maximum energy error and the
number of steps required by the method. The parameters
c and β are set to 0 � 1 and 6 � 0, respectively. This pair of
parameter values was found to be an optimal pair in our two-
body simulations.

In Figure 7 the error and work are shown as functions
of the scattering parameter. From the error diagram, one can
see that g2 is the most efficient control for this problem. This
is an interesting result, since it is based purely on two-body
interactions. While many of the initial conditions did lead to
strong three-body interactions, these interactions were suffi-
ciently resolved by g2. The work diagrams show the varia-
tion of the work required for each run. The control allows
us to not only improve the efficiency in each run, but also
over a large number of runs. The relatively constant error
curves for the controlled method, indicate its reliability for
this type of problem. One should also note that, when using
the g2 control, the largest errors are obtained for δ about 1 � 4
(which is also, incidentally, the parameter value for which
the largest number of steps was prescribed by that control).
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Figure 7. Efficiency of the methods when applied to a 3-body scattering
problem, with the total work held constant. Each plot reflects a total of
1000 different simulations, over a wide range of the scattering parameter, δ.
In the upper panel, the figure indicates the maximum fluctuation in energy
for each run. The amount of work required for each run is illustrated in the

center and lower figures.

Figure 8 illustrates the difference in the computed trajec-
tory of the fired atom for the controlled and uncontrolled
method. By integrating the same problem with a very small
stepsize, one can verify that the Adaptive Verlet solution is
qualitatively correct. This particular problem has a strong
three-body “collision”, which leads to a jump in energy dur-
ing the numerical integration. The negative effects are re-
duced by the small timesteps taken by the adaptive method
in the vicinity of the “collision”. The deviations from con-
stant energy are shown in Figure 8. In this case, the g2

control shows remarkable improvements in energy conser-
vation, which lead to more accurate resolution of the dynam-
ics. While one does not expect the integration of a scattering
problem to produce exact trajectories, one would like the en-
ergy to remain approximately conserved. We have already
shown that low-energy solutions (bounded trajectories) are
qualitatively different those at higher energy levels. Approx-
imate conservation of first integrals, such as energy, is a good
indication that the qualitative behavior of the dynamics is
correct.
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Figure 8. The improvements in the resolution of the dynamics of a 3-body
scattering problem. The computed trajectories of the fired body for the
controlled and uncontrolled methods, are shown in the upper and center
panels. In the lower panel, the figure illustrates the improvements in energy

conservation using the adaptive method.

5. Conclusions

Improvements of an order of magnitude or more, as seen
here, are common in low-dimensional problems. There is
a clear qualitative distinction between the symplectic and
reversible methods which is already evident in this small
example: the reversible scheme does not possess the “re-
straining hand” of a Hamiltonian perturbation expansion.
Nonetheless, the long term stability of the method is similar
to that of the symplectic integrator in long interval computa-
tions in low-dimensional applications.

For large systems the practical value of variable timesteps
becomes less clear. This is a consequence of the typical
ergodic behavior one expects which reduces the influence
of time-localized events (e.g. caused by strong collisions).
Another problem is that, in simulations of large systems, it
seems that the loss of the nearby Hamiltonian expansion can
sometimes lead to the possibility of systematic drift in the
energy.

There are certain situations where adaptivity may prove
highly desirable such as for chemical processes far from
equilibrium where a change of state and dynamical behav-
ior is observed over time. Other such problems may arise in

the conformational dynamics of proteins, e.g. where a sud-
den hinge motion may necessitate a smaller timestep. For
such problems, the design of the stepsize control function g
remains a challenging task.
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